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Abstract. ?he antiferromagneric Heisenberg model with uniaxial anisotropy, arbitrary 
spin and dimension is solved approximately for D > 0. The gmund-stare wavefunction, 
ils energy, and mro+pin witations are obtained. The validily range of the analylic 
approach is determined by comparing it with numerical computation and perturbative 
results in the large-D limit. It is shom that the paired, non-magnetic mitation method 
presented here yields more accurate mulls than linear spin-wave theory. 

1. Discussion 

Studies on this class of compounds, of which TMMC, K,Fe(CN), [1, 21 are prototyp- 
ical examples, show that they can be described by the antiferromagnetic Heisenberg 
Hamiltonian with uniaxial anisotropy: 

'H = J Q  
2 [S+(r)S-(r  + 6 )  + Sf(r + 6)S - ( r ) ]  

5 6  

+ J C S z ( r ) S r ( r + 6 )  - D ~ S ' ( r ) S " ( r )  (1) 
r,6 7 

where S ( r )  is the spin at the site r,  the spin size S depends on the material (for 
TMMC S = i), 6 is a vector connecting a point in one sublattice to any of its 
neighbouring points in the other sublattice, J is the exchange coefficient, a is the 
anisotropy parameter, and D measures the uniaxial anisotropy. 

In one dimension, for S = 4, this Hamiltonian was completely solved by the Bethe 
anzats 13-51, but for larger spin or higher dimension no exact analytical solution 
is known. Numerical solutions become more dilficult as well, and for the ZD-; 
Heisenberg antiferromagnetic lattice of 96 x 96 seems to be the stateaf-theart [6]. 
The study of the spin dynamics in real lattices thus resorts to approximate approaches. 
Among them, spin-wave theory has been shown to describe accurately the magnetic 
excitations of a number of antiferromagnetic crystals. However, the mini" error 
for the ground-state energy of spin-wave theory is obtained for a = 1 (3 and 2% 
error in one and two dimensions, respectively), and rapidly increases as a departs 
from unity (see figures 5 and 6 later). 

Recently, an approximate solution for this Hamiltonian in the D = 0 case was 
proposed [7-91. This solution is valid for a wide range of values of the anisotropy 
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parameter a, arbitrary dimension and spin. The method allows one to formulate 
the problem in terms of new elementaly paired, non-magnetic excitations and yields 
analytical expressions for the ground state, spectrum and, mean values with respect 
to the stationary states. The comparison of these analytical results with numerical 
computations in one and two dimensions shows excellent agreement (figures 5 and 6 
later). 

In this work we extend the method to include uniaxial anisotropy. A positive D is 
expected to favour the orientation of the antiferromagnetic order in the z direction, 
thus diminishing the spin fluctuations associated with the transversal (r,y) term 
of the Heisenberg Hamiltonian; the former increases the region of the parameter 
space in which the method suitable. The calculations are done for arbitrary spin and 
dimension and, are compared with numerical results obtained Erst in a small spin 
cluster and second, by perturbation theory calculations. 

M Montenegro and D Goiilieb 

We define the zerospin excitation operators as follows: 

with 

where r runs over the sublattice with spin up, k is a vector in the reduced Brillouin 
zone of one sublattice given by the antiferromagnetic order, z is the number of near 
neighbours and N is the number of spin S atoms in the lattice. 

The operators defined by relation (2) obey a complicated algebra. One has, for 
example, 

- ,ik'.(S-S')s+ (r)S-(r  + 6 - 6')S'(r + 6 ) )  (4) 

- J a S t ( r  + 6 -  S)S-(r)S ' (r  f 6) 

+2666 ,DSt ( r+6) (S ' ( r+6) -S ' ( r ) -1 )  

+ J S t ( r  + 6 ) S - ( r ) ( ( S z ( r  + 6 - 6') - S*(r + 6)  - h 6 6 , ) } .  ( 5 )  

However, if one substitutes the right hand sides of equations (4) and (5) by their 
projections over the Ndel state IN) which assigns spin up to sublattice r and down 
to the other, they reduce to 

(6) 

(7) 

[+6(k)'+6'(k')i = O  [46 (k ) ,$# (k ' ) ]  t = 6k,k'66,6' 

(31, 4d(k)] = ((2.79 - l ) J  + 2(2S - l )D]bJ(k )  E .+](k). 
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It is quite clear that the commutation rules (4) can be replaced by the much 
simpler ones given by (6) if either a is small or D is large enough, as both conditions 
assure that the system is close to a NBel order. Reference 191 shows that the procedure 
used here remains valid in a non-trivial region of parameter space; a precise criterion 
for the associated accuracy is also given there. 

Equation (6) shows that in the limit where antiferromagnetic order prevails (small 
a or large D )  the q5 operators represent a set of independent spin zero excitations 
which obey Bose statistics. Using these relations the Hamiltonian can be written as 

where Eg is the groundatate energy and is given by the following expression 

(9) 
N N J Z S ~ ~ ~  E = - - J z S 2 - N D S Z -  
2 2 [ ( 2 z S  - l )J  + 2(25 - 1)D] 8 

As expected, for spin one-half there is no contribution from the uniaxial term to the 
energy except for the trivial constant factor N D S Z .  

The q5 operators have the property 

q5s(k)lN) = Q6b,o lN  7 (10) 

where Q is a constant. From this properly one readily obtains that the ket 

satisfies 

&(k)lg) = 0 %6 (12) 

and is thus the ground state of the asymptotic version equation (9) of 71. 
In order to compare our results for the ground-state energies equation (9) with 

those obtained from an entirely different method, we solved a square arrangement 
of four S = 1 spins. As was shown in 191 the theory presented here works better in 
the large spin or high dimensionality limit. Then the configuration, which was solved 
numerically, corresponds to the more stringent condition in order to check the theory. 
The finite size of the cluster limits the accuracy of the comparison. We use the fact 
that for spin one in the isotropic case (a = 1 and D = 0) numerical results with 
negligible error are available [lo, 111 to determine an upper bound for the error in 
the small cluster calculations (7%). Our calculations are asymptotically exact in the 
king limit. 

Figures 1 and 2 shows how expression (9) for the ground-state energy (full curve) 
compares with the numerically obtained data for several choices of the parameters. 
The error expected in the numerical data relative to the case of large N is represented 
as a shadowed area. As expected, large values of D favour the antiferromagnetic 
ordering of the spins and makes (9) applicable in a wider range of a. What is 
surprising is the magnitude of this effect, in fact, a change of D from 0.0 to 0.4 
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P i p m  1. Ground-state energy Es as funclion of 
a (full curve) tor D = 0. The mor expected in 
the numerical dam relative to the case of large N 
h represented by the shaded aren. 

Flgum 2. Same as figure 1, but for D = 0.4. 
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Figure 4. Same as figure 3, but for D / J  = 8. 

a a 
Flgurc 3. Ground-state energy Es as function oi 
a (full cume) for D l  J = 4. The segmented line 
correspond lo perlurbalive calculations. 

enlarges the range of validity of the approximation from a by a factor of two. The 
same situation occurs in  [12] where the antilerromagnetic Heisenberg Hamiltonian 
with coupling to nearest (J1 > 0) and second nearest neighbours ( J ,  < 0) was solved, 
the change of J 2 / J ,  from 0 to -0.2 enlarges the range of a by a factor of two. 

Another verification of the theory presented in this work can be obtained in the 
large D limit. Let us think in a one dimensional, S = 1 chain of spins described by 
the Hamiltonian in equation (1). As D - M only the Sz = 1 and -1 components 
will survive, the energy of the Sz = 0 state being much higher. Therefore, an effective 
S = 1/2 model can be obtained by perturbation theory in 1/D. This has been done 
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by Wyom and Ziman [13]. Their result is the following: 

where Sz, st and 3- are effective spin one-half operators which obey 

321 * 1) = *;I* 1) S*l =k 1) = I f  1). (14) 

The spectrum of the Hamiltonian presented in equation 13 coincides with that of 
the antiferromagnetic anisotropic Heisenberg problem solved exactly by Orbach (due 
to the fact that X(J, , ,  J , )  is related to ‘H(-Jzy ,  J , )  by a unitary transformation). 
Then using Orbach wlculations for spin one-half we can test our theory for the S = 1 
case in the limit D > J .  The resultr are shown in figures 3 and 4. It is seen that the 
difference between our results (full curve) and perturbative ones are less than 0.1% 
even for n = 1 (or 1% if we do not consider the constant term - D ) .  We remark that 
the theory presented here works for arbitrary dimension (d) and spin (S) (the results 
are better as d and S becomes larger) giving closed expressions for the ground-state 
and excitation energies. 
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Pigum 5. 
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dimensional case. 
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Figure 6. Ground-state energy as a function of 
the anistmpy parameter 01 for lhe S = t WO- 
dimensional case. 

Finally it is interesting to compare the results of the present method with linear 
spin-wave theory. This is done for spin 1 in one and two dimensions, where exact 
analytic [4,5] or numerical calculations [14] are available in the literature. The results 
are shown in figures 5 and 6. It is seen that our ‘paired nonmagnetic excitation 
theory’ yields more accurate results than linear spin-wave theory, particularly in the 
twodimensional case. 
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